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1. Introduction

The gravity potential of the earth (W) can be decomposed into the
gravitational potential (V) and the rotational potential (¢):

W= V+?

As V is harmonic outside the surface of the earth, it can be expanded into a series
of spherical harmonics in this region (we assume that the series is convergent):

(1.1) = —GrM {1+§ (%)n i (C macosmA+ T, sinmA) By (sin w)}
n=3a =0
where
G Newton's constant of gravitation
M mass of the earth

(r,®,A) geocentric spherical coordinates of the computation point
1._3“() normalized associated Legendre polynomial

CuesSae  fully normalized spherical harmonic potential coefficients
a equatorial radius of the defined earth ellipsoid

In the study of the geopotential field it is most convenient to subtract a selected
reference field:

2
GM A a5 . & fEY=
U=—;—{1+Cao (;) Pao(smtp)+C40<?) B4°(sm¢)} + &

A A
where C3, and C4o are selected coefficients, from the potential W. The residual
potential (T) is the so called disturbing potential:

@®
(1.2) T=W-U= %M— z (%)“IL (CracosmA + §,, sinmA) P, (sin @)
n=23 a=0
3o
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Now, by inserting (1. 2) into the spherical approximation of ''the fundamental
boundary condition' (Heiskanen and Moritz, 1967, p. 88):

oT 2T
Ap = - SX _ L
g g r

we obtain the gravity anomaly (Ag) in terms of the potential coefficients:
o 2 n+a
(1.3) Ag= vy Z(n'l) 2 (CancosmA + S, sinm]) (%) P e (Sin @)
n=2a a=0
where

y = GM/a®

It is obvious from formula (1.1) that the coefficients C .o and §'n. are dependent
on the choice of a, but that C,,a" and §,, a" are invariant quantities. On the
other hand, for a fixed ¥ the gravity anomaly in (1. 3) is independent of the choice

of a, whenever:

Ca®™? and By o

are invariant. This means that for two different a-values (a3, a3) and ¥ = constant

the gravity anomalies in (1. 3) are the same, if (with obvious notations):

Cra
s

a+2

1.4 {S“} - (22)

nm " &

This relation will be useful in the following application of estimating the coefficients
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2. Covariance Functions

Suppose that the gravity field is harmonic, homogeneous and isotropic.
Then the spatial covariance function of the point free-air gravity anomalies Ag,
and Ag, is given by (Moritz, 1972, p. 89):

c,s"*?p, (cos Vi)

(2.1) Cy = cov (Ag,, Bgy=

n

I | ~18

where

s = re°/r,r,

rg = radius of the Bjerhammar sphere

re= ry+ he, k=1i,j

r, = radius of mean sea level

h,,h; = elevations of points P, and P,
= degree variances of Ag

The corresponding covariance function of the mean gravity anomalies Ag, and
Ag,, where:

B, = L H Ag 4o ; k=i, j

Ao,
Aoy
is given by
(2.2) Cyy = cov (Ag,,Ag,) = Aa,AoJ JJ H cydo do

Aoy Aoy

In the same way we obtain the following cross-covariance function between Ag,
and ZEJ

(2.3) Cy = r.; _” ¢y do
A0,

In these formulae A0 is a part of the unit sphere 0. For small regions Ao, and
Ao, we may, without loss of significance, assume that r, and r, are constants.
Then (2. 2) and (2. 3) become:

2.3 = _ ned __1
( ) Cyy i Cn S AO-——,AO_, _” II P, (cos ¥ ) do do
n=323 -3— Ac' Aaj

AP T .




The common way to determine the spherical harmonic coefficients of the
earth's gravity field from terrestrial data is by means of integration of mean
gravity anomalies over a mean earth sphere. See for example Rapp (1977a). Due
to the orthogonal functions the coefficients are obtained directly in the integrations.
Rigorously, it is required that the gravity anomalies are located on the sphere of
integration, but in reality, due to the variation of the elevation of the terrain, this
is not the case. This terrain deviation can be corrected for by adding the Molo-
denshy G, term to the mean anomalies. Pellinen (1962) has indicated that the
neglect of this term can cause errors in the low degree coefficients of 10 to 20
percent. Numerical results of Rapp (1977a) agree with this error estimate, but
the results were based on a number of assumptions relating the G, term to the
terrain correction.

In practice, the computation of the Molodenshy correct .. term for the terrain
may be very difficult and laborious, especially in areas with rapidly varying topog-
raphy. It is therefore of interest to find a technique for the determination of the
potential coefficients that does not include the computation of the G, terms, yet
retains the rigor of that procedure. One such method was given by Rapp (1977b),
where least-squares collocation was used for an upward continuation of the terres-
trial mean anomalies to a bounding sphere. Once the anomalies are given at the
sphere the integration can be applied strictly for the determination of the potential
coefficients. Rapp (1977b) found that the neglect of G, caused errors less than
7.5% for harmonics up to degree 40.

In the present study the idea is to estimate the potential coefficients directly by
applying least-squares collocation to the terrestrial mean gravity anomalies. The
integration is then taken care of in the cross-covariance matrix. The advantage of
using such a method is that the terrain correction is easily included and that the
various accuracies of the mean anomalies can be taken into account, which is not
obvious in the integration approach.

In collocation a physical quantity V may be predicted from a vector of (mean)
gravity anomalies Ag by the relation:

(1.5) V=o' (G+D)" Ag

where ¢/ = cross-covariance matrix (V,Ag)
C = auto-covariance matrix (4Ag, Ag)
D = error covariance matrix

The prediction errors are estimated by
(1.6) m’=Co - ¢ (C+D) ! ¢

Where Co is the variance of V prior to prediction. For further details on these
basic formulae see Moritz (1972).

The collocation technique requires that the relevant covariance functions are
known. In the next section we are going to study these functions for the present
application.
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' iy b
2.3) Cp 8 Ao, ‘” P, (cos ¥y) dO

Aoy

Iy

n=2

Formulae (2.2') and (2. 3') are very laborious to compute in practice due to the many
numerical integrations. Approximate mean covariance functions may be obtained by
using the B, function of Meissl (1971, p. 23):

L 1 1 ke
B, = l1-cosdy 2n+l [Py-y(cOS ¥o) - Pyyy(cos o))

where U, is the radius of a circular cap of area equal to the relevant ble= i size of
the mean anomalies. Then, the above covariance functions become (2pproximately)
(cf. Figure 2 a-b):

x

(2.2 Tu=). cas™2 8,2 P, (cos buy)
n=2

and

(2. 3”) Cy= E c, 8% 8, P, (cos ¥ yy)
n==2

As

it is usually sufficient to truncate the series (2.2”") and (2.3"") at a few hundred degrees

(dependent upon the block size) without loss of significance.

We also give the autocovariance relations between the potential coefficients.
In Moritz (1970) the relations are given for the anomaly coefficients (a,,, D,.). As
a,, and b,, are related to the potential coefficients C ,, and S,, according to:

{C nl} 2 1 A np
S o Y(n-1) \p

nm

where ¥y is the mean gravity at sea-level, we obtain from Moritz (ibid.):

B
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(2. 4) cov ((—: nm s qu) = Ccov (§n., §pq) = m 619 qu

where
1 if n=p

s e
W {0 if n#p
and

cov (C pa, §p q)=0 in any case,

The above covariance relations will be useful in our application . collocation.

Finally, we like to mention that the mean covariance functions (2. 2') and
(2. 3") can in addition, be approximated by the corresponding point covariance functions
simply by increas.ng the radii r, and r, by a feasible constant. This type of
smoothed covariance functions was discussed in Tscherning and Rapp (1974, Section 10)
and Schwarz (1976, Section 7),

3. Application of Collocation

We assume that the external gravity field of the earth may be expanded into
a series of spherical harmonics at a sphere of radius R. Then we have [cf. (1. 3)]:

S n+a o
(3. 1a) Agr = yz (n-1) (%‘) Y (€ .cosmA+5,, sinmA) P, , (Sin @)
n=a l;O
where
y = GM/a®
rg = radius of the Bjerhammar sphere
and
Cu cosmA
(3. 1b) {_ } = i - ” Agr P,,.(sinw){ ' } do
Sw “Te  4ny(n-1)(re/R)""* %y sinmA

Formula (3.1b) is the basic equation we are going to use for estimating the potential
coefficients, The coefficients determined by (3. 1b) are independent of the choice of
R. Thus by choosing R as the radius of the Brioullin sphere (bounding all the mass
of the earth) we have a theoretically most attractive situation, because the series
expansion (3. 1a) is rigorously convergent at this sphere (cf. Sjoberg, 1977). The

i




standard representation of the coefficients C = and S, in the literature is with
reference to the equatorial radius of the earth (a) (and not to the Bjerhammar
sphere as in (3.1b)). The conversion from (3. 1b) to this representation was
given in (1.4):

(3.2) {

Theoretically, the point gravity anomaly Agg in (3.1a) can be estimated
from a vector of mean gravity anomalies by means of formula (1.3):

(3.3) Agr = cq (C+D) ' Ag
where

cs = cross-covariance matrix (Ag, Ag)
The element (c«)y, is given by (2.3") with r,= R and C,, is given by (2.2"). The
error covariance matrix D can be estimated by the diagonal matrix formed by the
a priori estimated mean anomaly variances.

By inserting (3. 3) into (3.1b) we arrive at:

6nl cCY
(o= (1} v or g
where the elements of c. and ¢s become:
(Cc)yy 1 - g cos mA
3.5 = C 1y Ppa (Si : do
e {(cs)ii} 47y (n-1)(re/R)™"* 'r(J,’ ' (8 nw){sm mA}

We are going to simplify (3.5) by taking into account the orthogonality of the spherical
harmonics (Heiskanen and Moritz, 1967, p. 29). Usmg the notations:

{l—ln. @A) cosm)\}

} =P (sin(p){

S @) sinm A

we obtain from (2. 3'):

:
1
‘1




3.6 & [[zy RueNao-= A%J _[{3{ icns“‘ = [ Pucos by @ d0 do
5

- ata g B Bl
s av, j,] Rm (¥,A) dO 4
i

A completely analogous result is obtained for S,,. Inserting the result of (. 6) nto
(3.5) we finally obtain:

COS 1A

(Cc)yy c rs n+2
8.% T ot (= Pog /3100 do
( ) {(cs)”} 7(2n+1)(n-1) (l‘s) ch J.AJ.O ){Sm mk}
1
where
cosmA
f Pon (smtp){ )\} do =
Ao,
@ 1 if cosmA with m =0
N
= sinm A -sinm Aw)/m if cos mA
2% sin¢, 1sinws .[ Fu (sl @) coa 9 dp = ( i witl)x m # Oco = ’
e
Ps (cosmAw-cosmAg)/m if sinmA
with m # 0

0 if sinmA withm=20

©s, On, At, Aw = geocentric latitudes and longitudes of the corners of
the block A0,

If T,, is approximated by (2.3") the formula analogous to (3. 7) becomes:

(Ce)yy . Bn re\t*3 cosm'X
Lol {(cs)u} ~ ¥(2n+l)(n-1) ( ) P *3""’)1 nmx}
where
@ = @v+ ¥s)/2
A = e+ A0/2 o=

[ e TR g VA S ot - e




4. Error Analysis

Suppose that the gravity anomaly Ag used in formula (3. 1b) has the error
€; . The error propagation to C,, is accordingly:

1

ac na =
4my(n-1)(re/R)"*2

” € Ru (@,A)doO
o

and the mean square error of C,, becomes:

(4°1) anl = M {danl}=
1 o ¥ 3
i {7(n'1)(rs/R)"+=} M { My {04 Rua(®15X0) Rua (@229} ]
where
0y =M{g¢gl)= ;1_11; .” €, €, do
¥ y= const.
and

S |
s 4n .Uda’
(o4

As Ag of formula (3. 1b) is estimated by means of collocation, 0, is the prediction
covariance of that method. Moritz (1972), formula (3-39) with A =0 gives

(4.2) 0y=Cy - C;y (C+ DG

where the covariances of the right member are those defined in (3.3). Imserting (4.2)
into (4.1) and carrying out the integrations, we finally obtain:

T
o L e s—

-2 €,

(4. 3a) Mepy = m -cd (C+ D)-1 Cc

where the elements of ¢ are given by (3.7). Inthe same way we obtain the mean
square error for S,,:

-9~




—p Cp
4.3b =
ke e T omtINn-1)° ¥°

ce (C+ D)'1 Cs

We notice that (4.3a-b) give exactly the error estimates we would expect in collocation
with the prediction formula (3.4). Cf. formulae (1.5) and (1.6).

5. Computations

A global coverage of 416 10° equal area free air gravity anomalies were
available as input data. (These anomalies had been derived using the data of Ranp
(1977a) and the methods described by Hajela (1975).) In all comnute I covariance
functions the degree variances implied by the subroutine COVA . ‘I'scheining and
Rapp (1974) were used with c; = 7.5 mgal®, The cross-co\ :riance functions were
computed by numerical integration according to formula (3. 7) [derived from (2. 3)1.
However, for the auto-covariance function we felt that it was unreasonable to use the
corresponding, very laborious formula (2.2'). Instead, we tried two different
approximate formulae. In order to save computer time the auto-covariance function
for the mean anomalies for zero-elevations (h = hy; = 0) was stored in a table and
the current values were interpolated among the tabulated values. When elevation
information was included in the process the table was used only to determine the
auto-covariances between ocean-block mean anomalies.

The following reference data were anticipated:

6378140 m
-484.198 x 10”°
= 0.790333 x 10°°
1/298. 247

mQlQle
& ®
o o

I

In a first test of the prediction formulae (3. 4) and (4.3 a-b), the auto-
covariance function was approximated by the corresponding point covariance function
at the best fitting elevation (h, = hy; = 142. 3 km, cf. the end of section 2). Figure 1
indicates a fair agreement between this covariance function and the one implied by a
numerical integration of the point covariance function over 10°x 10° blocks (around
the equator). However, the prediction result was poor and especially the error
estimates were useless (because of negative variances!), It was apparent from the
test that choice of mean covariance function was very critical, especially for the
outcome of the prediction errors.

Second, the auto-covariance functionwas computed according to formula (2.37).

It was found that the series could be accepted when truncated at degree 200 (except for
¥ = 0, where n = 200 is sufficient), The very good agreement between the series

-10-~
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300 —

200

100

COV (Ag, Ag) mgal

Figure 1. Mean auto-covariance functions for Ag from subroutine
COVA (with c3 = 0). The selected elevation (h, = hg = 142. 3 km)
gave the point covariance function that best agreed with the numer-

ically integrated covariance function.
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(2.2 )and the numerically integrated 10°x 10° covariance function (formula (2.2")]
is illustrated in Figure 2a-b. In Figure 2a we can distinguish between the two
functions, in Figure 2b they coincide.

The spherical harmonic coefficients were determined to degree 20, both
with mean elevations set to 0 (Table A.1) and with the inclusion of approximate mean
elevations (Table A.2), (The approximate elevations were computed from the 5°
anomaly data reported in Rapp (1977a).) We also computed the coefficients by
collocation for zero elevation and no error covariance matrix included (Table A. 3),
The tabulated coefficients refer to the sphere bounding the earth ellipsoid with
a = 6378140 meters (cf. formula (3.2)). For comparison we determined also the
coefficients from the 10° mean anomalies by the integration method described in
Rapp (ibid.) [see also formulae (6.5a-b)]. See Table A. 4.

In Table 1 we give the differences between different sets of potential
coefficients. The relative mean differences give an over all view of the agreement
between various sets of coefficients. It is obvious that the coefficients implied by
the 5° anomalies (#251, Rapp, ibid.) agree slightly better with GEM 9 (Lerch et al.
1977) than those obtained from 10° anomalies. We also notice that the differences
between the GEM 9 solutions and the solutions by collocation are less than the
differences GEM 9 - Integrated 10° anomaly coefficients.

In Table 2 the potential coefficient solutions from 10° mean anomalies are
compared relative to Kaula's rule. For low degree coefficients the differences
between collocation (1 or 2) and integration is within 6% (except for n = 3). For
higher degrees the discrepancies increase. In general, the inclusion of elevation
information in collocation (Coll 1) seems to change the estimates a few percent.
However, note the large discrepancies (10%) for n = 3, When the noise covariance
matrix is excluded in collocation (Coll 3) the solution is clearly impared when
compared with GEM 9. One could expect that the collocation 3 solution should agree
better with the purely integrated coefficients than the other collocation solutions. We
have no explanation of why this is not the case in the computations.

In Table 3 the RMS accuracy estimates by degree of the potential coefficients
are compared. We notice that the accuracy estimates by collocation attenuate much
slower than those implied by the integration method. Comparing the accuracy estimates
of pure integration of 5° and 10° anomalies, we notice that the 10° estimates are
smaller. As this result cannot agree with reality, it is likely to believe that the model
used for computing the error estimates is too rough. The most obvious reason is
probably that the covariances between the mean anomaly errors are disregarded.
Although this is the case also in the collocation error estimates, the negative effect
is less pronounced for these,

Finally, we compare the computation time for the determination of the potential

coefficients from 10° mean anomalies (Table 4), The integration method is at least
30 times faster than collocation.

-12~
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300

200
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) mgal?
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®

100

v
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Figure 2a-b. Mean auto-covariance functions for Ag from subroutine
COVA with c; = 7.5 mgal®, In Figure 2b the small scale does not allow
for separating the two covariance functions. In the larger scale of
Figure 2a the differences can be distinguished.
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Table 2

Ratios between RMS Potential Coefficient Differences by Degree Implied by
10° Anomalies and (Cpa,Ss) = 10~°/n%
Units: Percent

Degree Int- Int- Int- Coll 1- Degree Int- Int- Int- Coll 1-
Colll Coll2 Coll 3 Coll 2 Coll 1 Coll 2 Coll 3 Coll 2 L
2 3 4 6 2 12 5 4 7 2 :
3 10 10 9 10 13 7 7 5 2 ;
4 5 6 12 4 14 7 6 ? 2 ;
5 6 6 5 3 15 T 7 6 2
6 4 8 9 3 16 9 9 6 2
7 4 3 4 3 17 14 14 11 1 |
8 6 6 8 2 18 17 18 14 1 1
9 5 4 5 2 19 21 22 19 1
10 4 4 8 2 20 28 28 24 1
11 6 6 6 2
|

Coll 1 = Collocation with Elevations
Coll 2 = Collocation without Elevations
Coll 3 = Collocation without Elevations or Noise Covariance Matrix
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Table 3

RMS Accuracy Estimates by Degree
for Pote “ial Coefficients

Degree # 251 Int 10° Coll 1 Coll 2
2 1911 1722 2054 1779

3 956 861 1674 2247

4 637 574 992 1207

5 478 430 691 807

6 382 344 468 438

7 318 286 443 486

8 273 245 370 378

9 239 214 341 360

g 10 212 190 301 300
11 191 171 285 289
12 173 155 272 277
13 159 142 266 266
14 147 130 250 248
15 136 121 243 243
16 127 113 237 237
17 119 105 231 231
18 112 100 224 224
19 106 94 217 217
20 100 89 209 209

Coll 1 = Collocation with Elevations
Coll 2 = Collocation without Elevations
All values multiplied by 10*°

=J8s
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Table 4

Computation Times for Various Methods

Method Degree of Expansion CPU Time
Integration 25 19°
Collocation '
with Elevations 20 1 18

| Collocation
without Elevations
(COVA in Table) 20 g" 2P

Computer: IBM 370/168
No. of Observations: 416

6. An Extended View 3

An extension of the previous computations would be to determine the potential
coefficients from 5° mean anomalies by collocation. However, as the number of
observations then increases from 416 to 1654, it is no longer a standard procedure
to invert the auto-covariance matrix of the system. Most computers cannot even
store such a large matrix. We are going to estimate the necessary computer time
as follows. In Table 5 the total number of necessary multiplications f (M) for
computing the potential coefficients by collocation to degree n, for M observations
are given, The direct method implies that the method of Cholesky is used for the
inversion of the auto-covariance matrix. Letus assume that the total computer time
T (M) is proportional to f (M). (We disregard the time needed for addition operations.)
Then we obtain from Tables 4 and 5 for no = 20 (no elevation information included):

T (1654) = L(A16) £ (1658) _ o o
f (416)

Thus the necessary computer time is so large that we should really consider whether
it could be reduced by modifying the method.
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One possibility might be to determine the coefficients and their accuracy
estimates according to:

Ex\l hCT 3
G- () =

;. and

% Ec CCThC

| 6.2 } e
; ( ) {Esz ? {CsT hs}
where the vectors of unknowns (h¢ and hg) are given by:

l
’- Cheeon ()

For each coefficient to be determined, the weights (h: or hs) can be computed iteratively
by the following formula (cf. Miller, 1974):

(6.4) WY - 1My e -c+p) 1)

M1 M1 M1 MM M1

where

0< B < 2/Anux
Amax = mMaximum eigen value of C+ D
V = iterative step: 0, 1, 2, ...
r M = number of observations (mean anomalies)

The starting value h(°) for the iteration is most conveniently given in the spherical
approximation. By assuming that all mean anomalies are located on the mean earth
sphere of radius r, we arrive at the following formula from (3. 1b) after replacing
Ag and C,, by Ag and B, C ,,, respectively [cf. Rapp, 1977a, formula (30)]:

M

(6. 5a) Cw=) 1 45,

wal

k=1

<18«

Sl s A o
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where i

(6. 5b) B s
4myB.(re/ry)" " (n-1)

IJ‘TPM (sin@)cos mA do
A0 i

| ©) Substituting cos m A under the integral by sin m A we obtain the weights
| ; (h'y ") for and coefficients S ,, in (6. 5b) and (6.5a), respectively. Even simpler
approximations are obtained for:

n+ cosmA

(6. 6) - (r——'>

3_ —
5 Pua (Sin @) {

_} Ao /[4ny(n- 1))
sin mA

which formula is given from (6.5b) by the approximation:

= cosma 3 " cos mA
A%k IALPM (sin @) {sm m)\} do ~ B, P, (sin @) {Sin mi}

k

where @ and A are given in (3. 7). As the elevation of the highest mountain is less
than 0.2% of the mean earth radius, we can expect that the iteration error in (6.4) is
insignificant after a few iterations. Again, it should be emphasized that the spherical
harmonic coefficients so determined refer to the Bjerhammar sphere (of radius rs)
and should be multiplied by (rs/a)"*® in order to be consistant with other coefficient
determinations, which usually refer to the sphere of radius a = 6378.140 km.

In the approximate formula (6. 5b) and (6. 6) we have disregarded the noise
covariance function D. When considering the noise covariance function:

\/_]8

d(P,Q) =) d,B.° (re’/rrrq) P, (oS ¥r)

Il L

n=a

the following weight function can be derived for the spherical case [see the Appendix,
formula (A.9)]:

X
(0)= T n+3 Ch o 7 cosm
(6.7) h (E> T Pe(sing) {sm mi} A0, /47y (n-1)

In the same way, if we assume that the errors between the blocks are uncorrelated,
the following weight function can be derived [formula (A. 11)]:

«10-




cosmA

(0) Ao, ra\"*3 [ p:‘ — =
(6.8) hk | ———— (—) 2(nt2 Pra(sin®y) | -}
Y(n-1)4m \r, 5/Tp 2 (+2) 2 Csin mA-
c.h <—I‘.) + (2n+1) €
where

?f = estimated mean square error of the observation in block k.

By using the iterative formula (6.4) we avoid the inversion of the auto-covarisnce
matrix. Formula (6.5) is theoretically attractive in h(o), because it implies that the
iterative collocation is carried out with the solution of the integration method as the
original step.

Finally, we compare the number of necessary matrix « crations for computing
the coefficients and their accuracy estimates by direct colloc 2tion [formulae (3. 4) and
(4.32a-b)] and the proposed iterative method [formulae (6.1), (6.2) and (6.3)]. In the
direct method the computations of the matrix inverse and the accuracy estimates are
the most laborious operations. For the comparison we assume that h'°’ of (6.4) is
a priori given and that Vv, steps are necessary in the iterative method. The numbers
of necessary operations for a determination of the accuracy estimates to degree no
[i.e. for (no+ 1)8 coefficients] are summarized in Table 5 (the direct method in
accordance with Westlake, 1968, Table 7.1).

Table 5

Number of Necessary Matrix Operations to Compute
Accuracy Estimates to Degree ng

Operation Direct Method Iterative Method
(Cholesky) [formulae (6.2) and (6. 3)]
Addition M®-2M°+ M+ (M+ M)(no+1)° | {(M+1) Mio+M} (no +1)2

Multiplication | # M®+3ZM°-M+ 2M° (no+1)° | (M°vo +M)(no+ 1)°

V o= mumber of iterative steps
M = number of mean anomalies




As the multiplications are the most time-consuming operations, we limit the
following comparison to those figures. Then we obfain from the table that the
iterative method is more efficient whenever:

(MVo+1) M (no+ 1)°<3M*+3 M°- M + 2M° (o +1)°

From this inequality we obtain

_WMAIM-2

{9.9) Bo ™ N IM@o-2)+2

or, approximately, for vy > 2
. M+ 3
6.8 < —_— -1
( ) Do < T (Ve-2)
Formula (6. 8) is illustrated in Table 6.
Table 6

The Maximum Integer (no) Satisfying (6.8)
for various M and Vo

M Vo 2 3 4 5 10 ;
100 70 6 4 3 1|
416 294 13 9 7 4|

1000 707 21 14 11 6 |
1654 1169 27 19 15 9
5000 3535 49 34 217 16 ,

10000 7071 69 49 39 24 ‘

no= maximum degree of series expansion

M = number of observations

Vo = number of iterative steps

The table shows that the iterative method is favorable merely for up to 2 or possibly
3 necessary iterations. However, as earlier discussed, the available approximations
h(®) could very well meet such a requirement,
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7. Conclusions

Geopotential coefficients determined by collocation were found to agree some-
what better with the GEM 9 coefficients than the coefficients determined by pure
integration of 10° mean anomalies. This result is probably due to the incorporation
of a weighting of the observations with respect to their a priori accuracies. However,
this gain is achieved at the cost of several times more computation time.

By the inclusion of the elevation information in collocation, the coefficients
to degree 20 changed by 3% on the average, A surprisingly large difference of 10%
was obtained for n= 3. The RMS changes of the undulation and the anomaly were
2 meters and 0.7 mgal, respectively. In general, however, we might expect thatl the
10° blocks give a too rough approximation to the topography to rereal uny more
significant magnitudes of the changes of the coefficients when " juding a correction
for the topography (the Molodensky G, term). A possible explanation of the 10%
differences for n = 3 in various methods might be the non-symmetric distribution of

the continents between the northern and the southern hemisphere.

From the comparison of the coefficient accu racy estimates for various
methods (Table 3) we conclude that the error covariances between the mean anomalies
should be taken into account in the computations by direct integration. In collocation
it seems less important to include these covariances in the computations.

A naturai continuation of the above study would be to compute the coefficients
for 5° mean anomalies by collocation. However, due to the difficult task to invert an
auto-covariance matrix for more than 1600 observations, the original method should
first be modified according to the iterative method described in section 6. The method
includes the solution by integration as a preliminary step. As this technique avoids
the inversion of the auto-covariance matrix, a considerable gain in computer time can
be expected. Another possibility would be to determine the auto-covariance matrix
in an iterative way,
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Appendix

It is desired to determine the spherical harmonic coefficients
(referring to the Bjerhammar sphere of radius rs) implied by a mean ‘
anomaly field Ag on a sphere of radius r,. The following covariance :
functions are given:

Ce [V Ciw B) ) /A,

(A. 1) {c, } (P) {cov (Sye’» 88r) P (n; ) Yo' a"(P)

where by = ¢,/By/Y(2n' +1)(n'-1)
I'd [

Yuu'(P) = pn"‘" (sin®;) t:?: f:‘nv?)\pp

(A.2) (@ P) = cov (B&,A&) =) B (5°/mr,*? B, (cos @e )
n=e

and

(A.3) d(Q,P) = cov (€,€) =$ d, 8,2 (rs° /1yt ¥2 P, (cOs ©0gp)

=]

The solutions for C,/,-and 5, -,’by the method of least squares
collocation are given by (see Sjoberg, 1978)

o G} 2} Ee

where the weight functions hc (Q) and hs (Q) are given by hQ) of the following
Wiener- Hopf integral equations

(.9 e = [ na{c@m+aan} de

A A
Propositionl: The weight functions for C,, and S, in (A.4) implied by
(A.1) - (A.3) and (A.5) for » = ry = r, = constant are given by:

(A. 6) h@ = (& )“*'—cn- Yox(Q) / ¥ B (n-1)
1) c, +d,
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Proof: We expand (A.2) and (A. 3) accordingly:

2 2 2(n +2
(A.2) ¢(QP) = 7 2% (27" v.@ v.@

and

(A. 3 d(Q,P) -QZ N

487 zn.)"‘"“’ Y ua (Q) Yau(P)
n=323 I:-I n l.l

aD  d [[r e (3 ga-pmnes

Inserting (A.1), (A.2'), (A.3') and the expansion

} h(Q) 'i h,a Ya,(Q
| ™

} into (A.5) we obtain from (A. 7):

(A.8) ba (/10 **2 Yoo () = Y by

2(n+2)
(2“1) =2—=2 §%(ry /1,) Y.u (P)

This identity is satisfied by

.c.n._(En.)’“ / vBy m-1) if n=n'and m = m'
hnl = {cn+dn rB
0 otherwise

The proposition follows from this result.

Using the following approximation (cf. Meissl, 1971, pp. 22-23)

Al—a ”Yum)doq = 8,Y:, (Q

Ao
where 6 is the center of the block Ao , we obtain the following relation
from (A. 6):
1 +8 -
A.9 o h d = -£. P c -
e 4n L (Q) do (r‘) —'—cn va, Yo () 40, / 4ny(n-1)
: -26-
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Corollary 1: For d(Q, P) of Proposition 1 replaced by

dQ,P) = €*(Q O(ye)

where 6 (Yq) is the Dirac delta function, we obtain

.10 = S8, (1 Y** 1
s M ) TR TG B

Proof; As

41—”” € (Q (Yo ) Yu(Q d0q = €% (P) Y, (P)

formula (A. 8) becomes in this case

m

bn'(l‘a/l‘.)“""a Yn'n’(P) Zhnn (_CL Ba (Lb' )a(n+a)+ €a(p))Ym(P)

\2n+¢1 " \r,

n'm

and the proof follows after noting that

h, =0 forn #n” andm # m/

In accordance with formula (A.9) we obtain in this case:

S _ CaB.° (1 \nta 1 & =
5 4 IJ e Kot ¥(n-1) (r,, ) ¢, B, (ra/1ry)° 0 *2) 4 (2n+1)€i6,)Y"'(Qk).%

Ao,

A A
Proposition 2: The error estimates for C,, and S,, of (A.4) and (A.5) are
gtven by

W = Co-1am [ [ [[0@ @) {c@@)+@,@) } dog oy,

where C, is the a priori variance of the coefficients.

A
Proof: We consider only the estimate Caps

A e A .
TM® = E {(Cog=Cad®} = E{C,2HECs2)- 2E {CoaCha
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where E{C.’) = Co

E(Cu) = oz [[ [ [m@ hQ) E 2 B& .1 doq dog-
- ;s—f,#””h(m h@Q) €(Q,Q)+d(Q, Q") }do,day.
and E (GuGal = &= [[MQ E(T, & 1 do,
=+ | @ c@ doy

= o7 ] ] @ n@) fe@ @5 +a@, @) 1dm do, -

From these deductions the proposition follows immediately.
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Table A.1: Fully Normalized Geopotential Coefficients Determined
from 416 10° Mean Anomalies by Collocation. No Mean Elevations

= » . (3
Included. All Coefficients multiplied by 10°. a = 6378140 m.
"N C B SICMA Nn c ] SICMA  SICMA
2 -4083. 4460
g 1 ggolgg -0.0906 0.1708 2 2 2.4400 -1.0037 0.1678 0.1077
o . 1.0949 0.1234 0.2261 s 2 1.1793 -0.4719 0.2263 0.2243
3 8. 0.7581 1.5310 0.2203
4 0.0957
4 1 -0.4564 -0.4057 0.1217 4 2 9.3170 0.3939 ©.1223 9. 1227
g 3 ggzgg ~0.3966 0.1100 4 4 -0.22686 0.4.66 0.11561 0.1141
3 1 -0.1576 -0.24A2 e.0017 5 2 0.4107 =0.2016 ©.9002p 9.0024
3 38 -9.2440 +-0.1369 e.0811 3 4 -98.0921 -9.0276 0.077) 9.0709
6 O 9.1064 -0.4974 0.0766
6 -0. 1376
6 1 9.1128 0.9633 0.0437 6 2 0.2016 -0.3643 ©.0464 0.0439
¢ 3 =0.0173 =-0.00623 0.0433 6 4 =0.1000 -0.4041 0.0426 9.0423
; o -:gz:: -0.3370 0.0396 6 6 0.0097 =-0.2402 0.0371 9.0379
7T 1 .2018 0.0466 0.0310 7T 2 0.2850 0.1194¢ 0.0497 0.0499
T3 9.1615 =0.1803 0.0301 T 4 =0.1572 =-0.1060 0.0490 0.0409
780 0.01%6 -0.0060 0.0472 7 6 -0.3078 0.2000 0.0448 0.0449
T € -0.0323 -0.0921 0.0449
1] 9.0422
8 1 -0.0423 0.037% 0.0400 n 2 0.1333 0.0993 0.0399 0.0494
o 9 9.0704 <-0.0294 0.03n3 8 4 -0.2167 0.0313 0.0392 9.03U7
0 3 -0.9017 0.0343 0.0473 0 6 -0.0006 9.1900 0.0358 0.0334
g 7 :0332 0.9713 9.0336 8 b -0.1417 9.0911 0.0343 0.0318
" :
9 9.1723 -90.0228 9.0301 % 2 0.1171 -0.004D o.mmo 0.0304
9 0 -9.1706 <-0.0)03 0.0372 9 4 =0.079%0 0.9490 0. 0.0363
9 0 -9.0572 -0.00496 9 6 0.0n14 0.102) 0.034¢
9 7 -0.0023 -0.62108 9 0 0.2008 ©.0063 0.002¢
* 9 -0.0159 0207
10 9.0:01
w1 0.1146 -0.0147 1o 2 -0.0407
“ 3 -0.9416 <-0.0954 10 4 -0.9963
10 8 -0.0261 -0.01(3 10 6 -0.0479
1w 7 0.0024 -0.0107 19 O 9.04)3 -0.63100
1 9 0.1013 -0.0222 10 190 0.1159 -0.0309
1 =0.0933
11 -0.0214 0.0107 nm 2 =9.0219 -0.0922
It 3 -0.0747 -0.1126 11 4 -0.1044 -0.0767
1 s 0.0123 007 11 6 -0.0112 9.0100
17 0.0373 ~0.1030 11 0 0.0092 9.0613
1 9 ~0.0456 0.0017 1 10 -9.0269 9.0109 0.08263 0.0233
11 11 0.0769 -0.0164
12 9.0330
12 1 -0.0213 -0.0334 12 2 9.0038 -0.0309 0.0303 ..O:Iﬂ
12 3 0.0097 0.0347 12 4 -0.0653 -0.0343
12 § 0.0376 =0.0023 12 0 0.0233 0.0496
12 7 -0.0240 0.0267 12 0 0.0100 0.0264 .
12 9 0.0106 0.0169 12 10 -0.0094 <-0.0265
12 11 ..:g!’l’ 0.0064 12 12 0.0134 =0.009¢
19 .
13 1 -0.0016 0.0108 13 2 0.0003 -0.0414
13 9 -0.0144 0.0421 13 4 0.0019 =0.0060
13 8 0.0306 0.0397 13 6 =0.0246 ~9.0006
w7 -0.0171 @.0137 13 0 -9.0237 9.0200
13 9 -0.0140 0.0334 13 10 0.0359 -0.0149
19 11 0.0043 ©0.0201 13 12 -9.0016 0.9943 0.0242 0.0245
913 -0.0347 0.0637
4 . 0000 0.0210
AT PRACTL
!
pH1S PAGE I LSHED 10 ,

e




Table A.1 (continued)  PRACTICABLE
THIS PAGE
J M)
FROM COPY, FURBNISERE &5

14 1 0.9289 14 2 -0.0307 -9.0173 9.0272
14 3 9.0270 14 ¢4 -0.0016 -9.0200
14 © 0.0254 14 6 -9.00R3  ©0.0010
" 7 0.0241 14 8 -0.0276 -0.0234
14+ 9 0.0234 14 10 0.0160 -0.0076
14 1) 9.0223 14 12 0.0011 =-0.0205
:g 13 0.0220 14 14 -0.0171 ©.0117
15 1 0.0274 15 2 0.0043 9.0133
3 9.0262 15 4 0.0042 -9 9125
15 6 0.0248 15 6 -8.0076 - . 0ise
15 7 0.0219 15 80 -0.0477  ,.0198
15 9 0.0231 13 10 -0.02¢ 4.0v02
13 11 ©.0220 13 12 -0.0° 5 ©.064%
13 13 v.0226 15 14 0.0119 -9.0212
:2 15 0.0243
16 1 0.0270 16 2 -0.0106 9.0019 0n.0258 0.0258
16 3 0.0236 16 4 0.0314 0.061v ©.9232 9.02852
16 8 0.0243 16 6 -0.0018 -0.0315 0.0237  €.0299
16 7 9.0216 16 8 -0.0502 0.0342 0.0230 0.0223
16 9 0.0226 16 10 -0.0069 -0.0063 9.0224 0.0223
16 11 0.0217 16 12 0.0161 ©0.0012 0.0217 0.0216
16 13 @.0213 16 14 -9.9010 -9.0239 ©.0225  0.022¢
16 15 -0.0090 -0.0333 0.02:11 ©.0219 16 16 -0.0178 -0.0172 ©.0292 9.0243
17 0.0019 0.0197
17 1 9.0034 0.0220 0.0296 0.0297 17 2 -0.0307 0.8173 0.0217 0.6217
17 3 0.0030 -0.0140 0.0270 0.0270 17 4 -€.0194 0.0298 ©.0231 0.0290
17 o -0.0163 0.0114 0.0247 0.0240 17 6 -0.0207 -0.0331 0.6220 0.62U0
17 ? 0.0192 -0.02)1 0.0291 0.0232 17 o 0.0212 -0.0092 0.0226  0.022¢
17 9 =0.01F -0.04%6 0.0210  0.0223 17 10 -9.0110 0.0128 @.0218 0.02§7
17 11 -0.001%  0.00:H4 0.02(9 0.0214 17 12 -0.0166 ©.0002 0.02i3 0.0212
17 13 0.0174  0.0102 0.0222  @.0204 17 14 ~0.0120  0.0198 9.921%  ,0210
17 13 0.0146  0.0172 0.0208  ©.0200 17 16 -0.0112  0.0i4l 0,022  0.0222
17 17 -0.0312 0.0061 0.0238 0.0247
1 0.0069 0.0102
1 -0.0199 -0.0490 0.016G ©0.0167 10 2 -0.0054 ©.0039 @.0109 0.0409
1 3 -0.0038 -0.0107 ©.0153 0.010% 10 4 9.0064 ©.0053 0.0292 0.0292
1 s 0.0044 0.0130 0.0102 0.0107 18 6 0.0164 =-0.0022 0.0236 0.0256
13 7 -0.0016 -0.0010 0.0206 ©.02G6 1w o 9.0203 =-0.0076 ©.0229 ©.0220
n 9 0.0030 0.0087 0.0210 0.0213 18 10 0.0104 -0.0049 0.0214 0.0213
0o ~0.0211 -0.0076 €.0213 ©.0209 18 12 0.6063 -0.0(7L 0.0211 ¢.0210
1B 19 -0.0032 -0.0320 0.0220 ©.0100 18 14 0.0022 -0.0193 ©.0209 0.0210
18 19 ~0.0410 -0.0271 0.0247 0.0102 10 16 9.0100 0.8129 0.0219 0.0217
7 0.0071 -0.0007 9.0220  0.9217 I -p.0041 -0.8116 0.06292 0.01G§
" 0.0001 0.025!
9 1 0.0001  0.0176 0.0216 ,0217 19 2 9.0200 -0.0094 9.0247  ©.0247
9 3 0.0007 <=0.0106 0.0297 0,0207 19 4 0.0164 <0.0116 0.0197 0.0197
Jd? 6 0,000  0.0049 0.0269  ©.0209 v 6 0.0063 0.0166 0.0168  9.0160
9 7 “0.0026  0.0048 0.0259 ©.0259 19 B 9.0220  0.0014% 0.0179 0.0179
19 9 9.0049  @.0049 90,0220  0.9241 19 10 -0.0143 =-0.0092 ©0.0193 0.9190
19 14 9.0003  ©0.9060 0.0210  ©.020D 19 12 -0.0021 =-0.80:H0 0.0204 0.0202
19 13 0.0077 =-0.6203 0.0230 0.0173 19 14 0.01539 <-0.0066 ©.0202  0.0208
9 13 0.0007 =0.015% 9.0241  0.0163 19 16 -9.0247  0.00019 ©.0206  0.0206 {
19 17 0.01N =9.0064 0.0214 §.0213 19 1 0.0006 -0.0092 0.0218 0.0197
19 19 00190 0.0090 9.0226 0,022 !
20 =0.0036 0.0204 {
20 1 =0.0117 =0.0031 0.0216 0.0216 20 2 -0.0016  ©0.003%3 0.0227  0.0227 |
20 9 -0.0076  ©.0D07 W.0293 0,020 20 4 -0.0050 =0.0191 0.0198 ©.9190 J

y 20 © ~0.0040  0.0011 ©0.0230 ©,0230 20 6 0.0116  0.0086 ©0.9221  0,022¢( :
20 7 -0.0177 -0.0068 €.0178 ©.9179 20 O 9.0069 -0.0022 0.0244  ©.0240
20 9 0 0.0163 20 10 -0.0000 0.0142 ©.0228  0.0220)
20 11 0.0102 20 12 -0.0191 0.0070 0.8206 ©0.020%
20 13 0.0162 20 14 9.0120 -0.0019 ©.9198 0.0199
20 18 0.015% 20 16 -0.0163 -0.0090 @.0200 0.0201
20 17 0.0202 20 18 -8.0094 -0.01A9 0.0218 0.0196
20 19 0.0200 ©.0200 20 20 $.0132 0.0043 0.0217 0.0218
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Table A.2: Fully Normalized Geopotential Coefficients Determined
(o] . a -
from 416 10° Mean Anomalies by Collocation. Approximate Mean
” - & - 6

Elevations Included. All coefficients multiplied by 10 a = 6378140 m.
Nn c 8 SIiCMA SICMA N M c 8 sicMAa SICMA
2 ~-483.4601 0.2212

S 1 «2721 -0.0049 0.2090 0.2196 2 2 2.3810 -1.3976 0.1927 0. 10606
3 0.6290 0.1772

3 1 1.0080 -0.0201 ©.1730 0.1604 3 2 1.3741 =-0.6472 0.1674 0.1690
4 3 0.6623 1.8312 0.1310 0.1662

4 0. 9 0.1096

4 1 =-0.4433 -0.3007 0.1001 0.0967 4 2 0.3700 0.4063 0.1036 8.1019
¢ 3 0.7904 =-0.3962 0.0947 9.0976 4 4 -0.2139 0.3966 0.0968 ©.09%63
3 0.2030 9.0792

s 1 -0.1429 -0.2469 0.0699 0.0673 8 2 0.4130 -0.1909 0.0721 9.6703
S U -9.2438 -0.1402 0.0694 0.0709 6 4 -90.0211 -0.0493 0.0662 0.0645
s 3 0.1198 -0.4990 0.0617 9.0667

(] -0.1464 0.0383

6 1 0.1178 0.04%0 0.0480 0.0406 6 2 0.2776 -06.3391 0.049%0 0.040Y
6 3 -0.0160 ~0.0632 0.0447 0.0483 6 4 -0.1730 -0.4046 0.0455 0.6459
6 5 -0.3137 =-0.5336 0.0399 0.0424 6 6 0.0041 -0.2293 0.0302 0.0407
T 0.2042 0.0304

7T 1 0.2090 ©0.0433 0.0473 ©.0460 T 2 0.2941 9.1233 0.0430 @.0430
7 8 0.1397 -0.1926 0.0432 9.0433 7T 4 -0.1382 <~0.1714 0.04350 0.0448
7T 95 0.0838 -0.0001 0.0421 0.0434 7 6 -9.309%4¢ 0.2030 0.0410 0.0401
T T -0.0367 =-0.0903 ©0.0411 0.041%

o 0.0310 0.0420

o 1 -0.0430 0.0344 0.0393 0.6391 8 2 0.1378 0.1003 0.03189 0.0392
a8 3 $.0798 -0.0220 0.0370 ©.0373 0 4 -0.2114 0.0454 0.0106 0.0u78
o s ~0.0193 0.0311 0.0339 0.0369 8 6 -0.0063 9.2006 0.0347 ©0.0343
68 7 0.0445 9.0733 0.0336 ©.0328 A B -0.1430 0.0239 0.vi44 0.0331
9 0.1377 0.0391

( 0.1770 =-0.0223 0.03064 0.0360 9 2 0.1169 -06.0046 0.0:

9 3 =0,.1794 =0.6320 6.0351 0.01330 9 4 -0.0619 0.0310 0.63

9 & “0.0399 =0.0061 0.6033) 0.0349 9 6 0.0n07 0.1123 0.0

9 7 -0.0827 -0.0220 v.04i0 e.0m7 P 0 ®.20410 0.0072 0.0

v 9 -0.0179 9.0233 0.6014 0.0817
1 0.0264
10 1 0.1151 =0.1m78 0.0328 10 2 -0.0423
10 3 -0.0419 -0.9970 0.0319 10 4 -0.09060
10 6 -0.0270 -6.0110 9.0307 10 6 ~-9.04901
1 7 0.60u28 -0.0201 0.0279 10 0 -0.0324
:0 9 -9.0220 0.0267 10 10 0.1172 =-0.0333

1
| | 0.0074 0.0307 1n 2 -0.0200 -0,0928
I 3 ~0.0731 =0.1140 . 0.0300 | . ) -0.1059 <06.0790
[N ] 0.0114 0.6070 0.0204 0.0200 11 6 -0.0107 0.0098
| 4 0.0372 ~0.1033 0.0276 0.0276 Mo 0.0099 0.0609
1 9 -9.04% 0.0021 0.0259 0.0261 11 19 -0.0230 ®.0136
1 0.0766 -0.0169 0.0267 ©.0269
12 0.0312 0.0017
12 1 -9.0245 -0.0337 L0294 12 2 0.0033 <-0.0303 0.0290 0.0302
12 3 0.0114 0.0300 0.6290 12 o -0.0630 -0.0330 0.0203 9.0282
12 6 0.0368 <=9,0022 0.0273 12 0.0272 0.0390 0.0270 0.0267
= T -0.0249 0.6277 0.0267 12 8 0.0101 9.0269 0.0239 0.0236
12 9 0.0100 0.0190 0.0248 12 10 -0.0092 -0.0274 0.0230 0.0248
12 1 0.0103 0.0060 0.0246 12 12 0.0140 -0.0106 0.0261 0.02¢0
19 0.0460 0.6299
11 -0.0020 0.0183 0.0214 e.e217 10 2 0.00983 <0.0421 0.0204¢ 0.02H9
18 9 -0.0143 ©.0413 0.0200 0.0202 13 4 0.0024 -0.0069 0.0273 0.0270
134 O 0.0593 0.09306 0.0206 0.0269 13 6 -0.0243 =-0.0092 0.v261 0.0239
19 7 -0.0172 0.0163 ¢.0233 0.0234 13 0 -0.0234 0.0199 0.0254 0.02350
13 9 -0.0137 0.0347 0.0244 0.06243 13 10 0.0431 =-0.0129 0.0249 0.6243
13 11 0.0047 0:0204 0.0241 0.0242 13 12 -0.0004 9.0966 0.6230 0.0241
1) 13 -0.0:148 0.0650 0.0233 0.0236
14 =0.00067 0.02m
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Table A.2
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QL= CNUNC - LN

- - -.._
NAS = CNIAL = Nl =ONGle AL ONAL -

- -
CNAL = ENAD -

-
THNAL = S NAL -

(continued)
0.0192 9.0074
0.0103 0.0093
0.0157 -0.0069
0.0034 =-0.0143
90,0157 0.0411
0.0027 -0.0742
0.0270 ©.0306

-0,00i16
0.0340 0.0267
©0.,0440 0.0449
0.0104 0.0180
0.0339 0.0129
0.0027 =0.0029
-0.0064 0.9107
-0.0179 0.0179
-9.0262 0.0071
0. 02073
=-0.0089 0.0137
-0.0174 0.0203
-0.0111 0.0204
-0.0123 =0.0033
-0.0032 =0.05316
0.0060 -0.0113
0.0010 0.0133
-0.0107 -0.0438
0.0020
0.0053 0.0226
0.0040 -0.0144
-0.0161 0.0111
0.0180 -6.020%
-0.0173 -0.0433
-0.0011 0.0003
0.0100 0.0103
0.0145 0.0166
=0.0014  0.0060
0.0066
=0.0200 =-0.03%
=0.00688 =0.01006
0.0043 0.0142
=0.0013 =-0.0023
0.0063 0.0094
=-0.0210 =0.0076
=0.0033 =-0.0523
=0.0413 -0.0201
0.0093 -0.0093
-0. 0003
0.0001 w0174
0.0001  =0.0100
-0, 00010 0. 0049
-.0025 0.0042
0.0049  ©.0049
0.0007 0.0038
0.0002 -0,0294
0.0010 -0,01600
9.0194 =0.0063)
0.0199 0.0091
-0.0056
=-0.0120 -0,00146
-0.0067v 0.0011
=0,000 0.0011
=6.0179 =0.0089
0.02104 ~0.0077
0.02u40 9.v037
0.0030 =0.0006
6.00U83 -0.0060
-9.0016 0.9071
-0.0022 0.0006
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0.02060
0.0271
0.0253
0.0242
0.0203
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-9.0179

-0.0104

0.0047
0.00:11
-0,0078
=-0.043°
0.0
-0, 107
0.e119

-0.0103

0.0017
-0.0026
-0.05035
-0.0062

0.01356
-0.6019
-0.0173

-0.03083
-0.0106
-0.0213

8.0211
-0.0110
-0.0167
-0.0126
-@.0112

-0.0054
0.0060
0.0160
0.0281
0.0144

=0.0044

0.0209
0.0163
0.000h
v.0222
=0.0134
=-0.0018
8.01u1
=0.0243
0.0336

=0.0036
=0.0047
0.0116
0.06069
-0.0013
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.01ve
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-6.0172

9.0176
0.6300
~-0.8357
-0.0095
©.0127
0.0002
0.0103
U.0tus

9.0042
0.0037
-0.0027
-0.0077
-0.0042
-0.0172
-0.0194
0.0126
-0.012%

-0, 0090
-0.0116
0.0166
0.0017
-0.0091
=@, 0001
-0.00635
V.009 ]
-0.0092

90.0029
-0.01467
0.0083
-0.0024
0.0143
0.0000
-0.0013
-0.06eu8
-0.0187
0.0044
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Table A.3: Fully Normalized Geopotential Coefficients Determined
from 416 10° Mean Anomalies by Collocation. No Elevations Included.
Noise Covariance Matrix D = 0. a = 6378140 m. Coefficients
multiplied by 10°,

M c S SI1CNA NN [ 8 SICMA SI1CMA
-483.246
1 2.3333 09.0731 0.0808 =2 2.4441 ~1.4526 0.04878 ©.0060
1 1.7960 0.0687 ©.2093 3 2 1.16002 -0.4638 6.2102 0.2093
3 0.7672 1.5693 0.2100
1.0257
1 -0.4403 -0.39%6 0.1076 4 2 0.3340 0.4002 0.1070 @.1063
3 Q.Zzlﬂ -0.4191 ©.1037 4 4 -0.2243 Q.41587 0.1039 9.1061
0.2040
] -0.1577 =-0.2423 0.0699 g 2 0.3902 ~0.1930 0.0695 0.069%4
H} -0.2319 -0.1342 0.0u01 3 4 ~0.0062 -0.8101 ©.0674 ©.0677
s 0.1009 -0.3070 0.6691
-0.0%214
1 0. 1236 0.0478 0.6292 6 2 0.2066 -0.3644 0.02A00 8.0249
3 -0.0162 =0.0610 0.0239 6 4 -0.1792 -0.4131 0.0249 0.0240
S5 -8.38"0 ~9.34249 0.0240 6 6 0.0017 -0.2346 0.0252 0.0237
L2031
] 0.2026 0.0449 0.0412 Y X 0.2920 0.1261 0.0411 0.0410
3 0.1539 =0.1040 9.0399 7T 4 ~0.1626 ~0.1636 0.0003 0.0:509
S 0.0901 =0.0v48 0.0382 7 6 -0.3073 0.2070 @.940€ 9.0304
7 -0.0293 =-0.0949 0.0391
0.0619
1 -0.0440 0.0461 ©.03v7 8 2 0.1292 0.0908 0.0308 0.0067
3 9.0812 =0.0213 0.0294 a 4 -0.211% 0.0304 0.0281 0.e203
5 -0.0170 0.0339 0.0272 a 6 -0.0877 0.1944 0.0269 0,0269
k3 0.0404% 0.0712 0.0270 a a -0. 1447 0.0913 o0.02112 Q.02¢02
0.1370
1 0.18013 -0.0271 0.0310 9 3 0.1212 ~-0.0779 0.0110 0.0310
a =-0. 1073 =-0.0303 0.0302 9 4 -0.0606 0.0384 0.u291 Q.0201¢
3 =~0.0502 =0.0:117 0.0201 9 6 0.0922 Q.14+ 0.0276 0.0271}
7 =-0.0030  -0.0199 0.0276 2 0 0.2044 Q.00 ©.0276 0.0270
9 -0.0129 0.0202 V.02
0.0403
1 0.1216 =-0.0106 0.0235% 10 2 -0.0710 ~-0.6420 0.0236 0.02%56
a -0.0006 =0.0991 0.0247 10 4 -0.0673 ~0.1026 0.0236 0.0206
8 =-0.0270 =0.0139 0.022% 10 6 ~0.0316 ~0.04H7 0.0216 0.0211
74 0.0U64 =-0.0170 0.60209 10 0 0.0441 -0.0371 0.02)0 0.0211
9 g.loﬁl -0.0191 0.0216 19 10 0.1077 -0.0314% 0.0233 Q.022
=-0.0929
1 -0.0222 0.0041 0.0250 ) 1) P -0.0241 -0.0912 0.0250 0.0250
a3 -0.0006 =-0.1206 0.0251 | 5 -0.1030 -0.0737 €.0240 0.0241
5 0.0152 0.0077 0.0230 | B -0.0007 0.0093 0.0220 0.0217
7 0.0357 =0.1180 0.0215 it o 0.0073 0.0666 ©.0209 6.0210
9 -0.0474 0. 0003 e.0217 1t 10 -0.0293 0.0168 0.0223 0.0212
1! 0.0790 -0.017) 0.0234
0.04019
1 -0.0183 =-8.04914 0.0233 12 2 0.0067 ~0.0279 0.0237 0.0237
K} 0.0129 0.0326 0.0240 12 4 «0.0673 =-0.0479 0.0241) 0.0241
S 0.0569 =0.0016 0.0230 12 6 Q.0292 9.0313 0.0222 8.0219
? -0.0231 0. 0120 0.02:4 12 0 0.0092 0.0266 0.6200 0.0210
2 0.0109 0. V167 0.0207 12 10 -0.9117 =-0.0266 0.0213 0.0214
1t 0.09920 0.0039 v.0217 12 12 0.0141 -0.0100 0.023¢ Q.02u3
0.0407
1 -D.0v032 0.0142 13 2 0.0077 =-6.031H1 0.0234 0.0254
H) -0.0193 0.9376 K 4 0.0040 <~0.0039 0.0229 0.0249
5 0.0302 0.0400 19 6 “0.0242 -0, 0111 ©.0220 0.02:20
7 -“0.0177 0.0102 19 8 -0.0230 0.0222 0.0206 0.0207
9 -0.0176 0.0 139 10 0.0030 -0.0114 0.0207 0.0204
1 0.0068 0. 0200 13 12 -0.0042 0.0994 0.6215 e.0217
193 -0. 079 9.063) 0. 0204
0.0128
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Table A.3

CoNNL- ZooNan~

NG = CNA -

-
CNAL =oAL -

—————
TN =Nl -

(continued)
0.0222 0.0077
0.0049 ©.00306
Q.0141 =-0.0087
0.0416 -0.0149
0.0155 0.0437
0.0427 -0.0133
0.0342 0. 00v3

-0.0024
0.0000
0.04063
0.0139
0.0147
=0.0038
0.0160
0.0173
0.u896
0.0144
*»

0.6029
0.0064
0.0081
-0.0184
0.0223
-0.0202
0.0003
0.0191
0.0167
-0.00821¢
0.0102
-0.0251
=-0.0093
0.0062
=0.0044
0.0071
~0.0204
-0.0066
-0.0442
0.0092
=0.0002
0.0014
V.0023
=0.0093
-0.v015
0.0029
0.00u%
0.0097
0. 00430
0.0199)
Q.0
-0.00%6
=0.0140
=0.0100
=0.00143
0.0
0.0291
00240
0. 0005
00090
“0.0014
=-0.0020

0.0219
-0.0070
-0.4394
=0.0126

0.0160
-0.0130

0.0201
-0.0116
0.0109
-0.0200
=-0.0477
0.0029
0.0111
0.0101
0.0069

-0.0419
=0.0004

0.01%6
=0.0023

0. 0099
=0.609H
=0.0534
=0.0291
=0.0110

0.022)
=0.0100
0.0034
U.0064
0.0056
V.0092
-0, 0264
=0.0150
=0.0076
BN R

=0, 0052
0.0076
0.60009

=0.0009

=0.0094
v.o0in

=0. 0020

-0.0093
V. 0074
V. 0002
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Table A.4: Fully Normalized Geopotential Coefficients Determined
from 416 10° Mean Anomalies by Integration. All coefficients mul-
tiplied by 10°. (Error Estimates not corrected by B~ *.)

i

N N c S SICHA SICMA N N (] 8 SBICNA SICHA
2 -4133.0679 0. was
2 1 0.2204 0.0726 0.1031 0.189%4 2 2.4300 -1.4632 0.14350 0.14061
9 0.5031 0.0862
C 1.9183 -0.0421 ©.09vsh 0.0963 3 2 1.1970 -0.4740 0.0076 0.eun50
4 8 0.79:3 1.6197 0.0696  0.0701
+ 0.0030 0.0600
4+ 1 «0.4061 <-0.3934% 0.0394 0.0393 s 2 0.3324 0.4247 0.0616 0.0604
4 9 0.7911 =-0.4269 0.0521 0.0347 4 4 -0.2213 0.4239 0.0464 0.04u48
1] 0. 13359 ¢.0457
g 1 =0, 1587 -0.274H0  0.0+4106 0.0423 3 2 0.4009 -0.1949 0.0461 0.0439
3 8 “0.283180 =0.1319 0.0346 0.0443 5 4 -0.0061 -0.0193 0.0479 0.0472
5 5 0.1026 =-0.3222 0.0323 0.0334%
6 “0.1711) 0.0354
6 1 0. 1204 0.0476 @.0UG0 0.0443 6 2 ©.2723 -0.9312 ©.0U%9 0.0042
6 3 “0.0105 =0.0%97 0.0364 ©.0361 6 4 ~0.1776 -0.4002 0.033D ©.0343 i
6 & ~0.3570 -0.35284 0.0270 0.02% 6 6 0.0066 -0.2309 0.0236 0.0289
T 9. 1830 0.0274
T % 0.1994 0.0313 0.0297 0.0298 T 2 0.2006 0.1244 0.0271 0.0276
7 8 0.1618 =-0.1813 0,0293 0.029% 7 4 -9.1629 -0.1626 @.0293 ©.0219
72 5 0.0073 -0.0049 0.v254 0.0271 7 6 -0.3063 <2026 0.0228 0.0224
o “0.0412 -0.0904 00,0210 ©.0209
Q 0.0182 9,0206
g 1 -0.04338 9.0:61 0.0234 0.0241 a 2 0.1170 9.0993 0.0237 0.0246
u 3 0.0008 -0.01" ) ©,0240 8.0z1 N 4 -0.2054 0.0526 €.0237 0.0247
n o ~0.01456 0.0548 6.0210 0.0:242 o 6 -0.0826 6.1837 0.0212 0.0210
[ . 4 V. 096 0.06462 0,011 0.0103 0 o -0. 1070 0.0909 0.01682 0.0168
U O, 1200 9.0202
9 1 0.1729 -0.0000  0.0207  0.0206 9 2 0. 1191 -0.0779 0.0204 0.0210
9 3 0,170l =9.0299 0.6201 0.0201 9 4 -0.0300 9.0529 0.0209 00200
9 8 “0,. 0360 -0.0279% 0.0200  0.0221 9 6 0.0071 0.1790 0.019% 0.0194
9 7 ~0.0013 =-0.61L8 0.0177 0.0173 9 8 0.1900  0.0102 0.0139 @.0132
9 9 -0.0170 0.6203 0.0131 0.0190
10 0.0210 0.0171
10 1 0.1146 =0.0170 0.0140 0.0103 10 2 -0.0713 -06.0372 0.0176 0.0170
1 3§ =~0.Q118 -0.0946 ©.0477 0.0178 10 4 -9.0393 -0.0936 0©.0177 0.0171
12 3 -0.0241 =-0.0129 0.0170 0.0106 10 6 -0.0821 -0.0476 0.0103 0.0102
1 7 0.0707 =-0.0149 0.01061 0.0161 10 B 0.0443 -0.03523 0.01352 0.0145
v 9 0.0909 =-0.0203 0.0136 0.0130 10 10 0.1135 -0.0013 0.0126 0.0182
1 =0.0963 0.01508
"o =-0.0276 -0.0000 ©.0149 @.0160 1 2 =0.02138 -0.08082 ©,016} 0.0163
13 =0.0729 =0.1143 0.0156) 0.0149 1 4 =0.098:1 <0.00lk3 0.0159 0.01%¢
1 a8 .09 0.0071 0.0173) 0.01063 1t 6 =-0,01(0 0.0062 0.0162 6.0160
7 0,005 ~6.1069 0.91506 0.0134 11 n @.0079  D.0614 0.8109 0.014
I 9 0. 0470 0,0771 0.0131 0.0123 11 10 -0.0216 0.0163 0.0110 0.011¢
1 00705 =0,0127 0.0113 0.0113
" 0,003 00§42
[ H | “0.010% =0.0296 00,0129 0.01491 ” 2 0.0015 =-06,0231 0.0100 0.0148
[ECO 3 V.01 0.009%8 0,016 V. 016 12 4 =0.06100 -0.03134 0.0183 0.0102
12 0 0.004% =0,0016 0,016 0.0142 2 6 0.0207 0.0361 00,0107 .01y
X 7 =0.02:10 V.00 0,014 .01 I 0.0107 Q0244 0.0(U% .02
12 9 ©0.0109 0.0162 0.001D v.0113 12 19 =0.0072 ~0.0201 0.0111 0.0111
1221 0. 00n% 0.0047 0,009 e.010) < 12 0.0137 =0.0001 0.010) 0.00%
1 0.0461 0,022
[ K I | =0.0091 0.0083 0.0110 0.0121 I 2 0.0078 ~0.00119 0.01106 0.012¢
19 3 ~0.0143 0.0459 0.0126 0.0124 13 4 0.0042 =0.004% 0.0117 0.0t
13 5 0.0370 0.0400 0.0119 0.0123 13 6 -0.0274 -0.01607 0.0123 0.0 128
17 -0.0173 0.6141 00,0122 0.0121 13 0 -0.0222 0.0218 0.0129 0.0122
1 9 -0.0144 9.0002 0.0113 0.0111 13 10 0.0313 -0.007H ©.0102 8.009%y
13 11 0.0029 0.0270 0.0096 0.0090 13 12 =-0.0604) 0.0923 e.0007 0.0049
13 13 -0.00749 0.0626 6.00066 0.00%0
4 0.0027 0.0104
E
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14 1 0.96223 0.010t 0.0106 0.0113 14 2 -0.8470 -0.0171 0.0162 0.01020
149 3 0.0123 0.0023 0.0114 0.0111 14 4 -0.0019 -0.0225 0.010/ o 0103
14 6 0.0139 -0.0101 0.0103 0.0103 14 6 -0.8004 6.0033 @.8109 6.011¢
14 7 0.0274% =0.0182 0.0109 0.0108 14 8 -0.0234 -0.0230 0.0i1! 0.0107 ¢
14 9 0.0162 0.039% 0.0111 0.0100 14 10 0.0131 -0.0009 @&.6097 ¢. 8094
14 11 0.0289 =0.0766 0.0609 ©.0048 14 12 L0034 -0.0227 0.0004 a.0047
1+ 13 0.0074 0.0240 0.0076 0.0078 14 14 -0.0108 0.0163 @.007% 0.0080
13 -0.0047 0.00%
13 1 0.0203 0.0243 0.0088 0.009%4¢ 15 2 9.0033 0.0100 ©.609%6 0.8099
13 3 0.0407 0.0477 0.00%Y 9.00%4 13 4 0.0037 -0.0173 @.Q(v2 34,0068
15 5 0.009%6 0.0144 0.0087 v.0090 15 6 -0.0091 -0.0251 0.0e¢5% 3. 0000
1 7 0.057 0.0128 0.0M8 0.6097 13 0 -0.0394 0.019%  ©.0099 0.009¢
s 9 0.0033 =€.0063 0.06097 0.0097 13 ~0.0267 0.000y  ¥.0095 ©.009%3
13 11 =0.0022 0.0'46 0.0003 0.0001 18 12 -0.0170 0.0669 0.0078 0.0074
13 13 =0.0218 0.0.04 0.0674 ®.0077 15 14 9.01.2 -0.0178 9.0ubl  0.006%
15 13 -0.0242 0.0162 0.0067 0.9v071
16 0.0201 0.6099
i 1 *0.0098 0.6187 0.0067 6.0071 16 2 -0.0138 0.001% 0.069¢ 0.00%8
16 3 -0.0213 0.0213 0.0079 0.0077 16 4 0.0369 0.6731 0.0051 9.0040
6 8 -0.0097 0.0204 0.0003 0.0004 16 6 -0.0040 <-0.06314 0.0079
16 7 -0.0107 =-0.0072 0.00H9 Q.481y 16 8 -0.0337 0.0328 ¢.0888 ©.0008%
16 9 -0.0017 =0.0300 0.0003 ©.0080 16 10 -9.0013 -06.80% 0.00 0. 06b7
16 11 0.00iv =0.0150 0.00483 0.0002 16 12 0.0172 =-0.004¢ ©.0073 0.0069
16 13 -0.0001 0.0140 0.0066 0.0072 16 14 -0.0034 -0.0253 6.0066 9.0067
16 13 -0.0116 =0.0367 0.0039 0.0063 16 16 -0.0223 -0.0170 0.0063 0.00659
17 0.0031 0.0090
17 1 0.0007 ©.0262 0.0009 0.0062 17 2 -0.0334 ©.0232 0.000¢ 0.0081
17 3 0.0160 -0,u226 6.0077 0.0073 17 4 -0.0243 0.0340 0.0073 6.0372
T 6 -0.0204 $.0126 €.6080 ©.0003 17 6 -0.0261 =-0.0411 0.0067 0.0871
17 7 0.02U3 =0.0243 0.0076 0.0077 17 B 0.0216 =-0.0147 0.0082 0.0070
17 9 =0.0191 =-6.0363 0.6074 @.0070 17 10 -0.0153 ©.0127 0.8077 9.0078
17 11 =0.0010 0.0063 0.0077 0.0676 17 12 ~0.0220 <-0.0007 0.0072 9.0070
17 13 0.0171 0.0117 0.6034 0.006% 17 14 -0.0009 9.6202 0.00s1 0.0062
17 13 0.0191 ©.0102 0.0034 0.0064 17 16 ~0.0097 0.0131 0.003¢ 0.0054
17 17 =0.0000 0.0078  0.00456 0.005+4
" 0.0122 0.0041
m ot =0. 0166 =005 0,000 0.0090 m 2 9.0046 0.0024 0. 002
m =0.0091 =0.9129 0.0042 0.0091 n 4 0.0u1% 0.0v42 0.0040
[T} @.o0uin 0.0177 6.0070 0.0002 18 6 =0.0023 @.6062 0.0064
mw 7 =0.0041 =0.0022 @.00063 9.0063 i o =0.0070 €.0074 8.007¢
9 V.09 0.0114 0.0000 0.0073 i 10 =-0.0047 0.0068 0.0068
14 11 -0.0192 -0.0127 0.0071 0.0069 10 12 =0.0221 0.0067 0.0067
(110 K3 =0.00493 =-6.0360 0.00410 9.0073 18 14 -9.022, 0.0054 0.00358
15 =0.0470 =0.0401 0.0043 0,0063 10 16 0.0090 0.0056 0.0049
13 1?7 0.0074 =-0.0103 0.00%6 ©.904% 18 10 ~0.0108 9.002¢ 0.0063
19 0.0001 0.0041
19 1 =0.0062 0.0267 0.00713 0.0073 19 2 -8.0176 004s 0.0044
1 3 0.0038 =-0.0273 0.0064 0.0063 19 4 -0.0172 0.0070 0.0069
17 5 -0.0114 0.0066 0.0007 0.0039 19 6 0.02U9 0.0077 @.0074
19 7 0. 0001 9.0031 0.0031 ©.0043 19 & -0.001t  Q.0067 @.0063
19 9 0.0047 ©.0063 0.0061 0.0063 19 10 -0.0132 0.0062 0.0063
19 1 0.0028  0.0098 0,.0061 ©0.0061 19 12 -0.0074 0.0063 0.0062
19 13 0.0104 =0.0292 0.6039 0.0074 19 14 -0.0018 0.0033 0.0034
19 13 0.0000 -6.0170 0.0034 0.o0038 19 16 $.0113 0.005) 0.0043
19 17 0.0240 =0.0093 0.6049 0.0043 19 18 -0.0127 0.0039 0.0046
12 19 0.0320 0.0142 0.004) 9.0043
20 -0.0117 0.0040
20 1 -0.0275 =-0.0072 0.0037 0.0030 20 2 0.0030 0.6053 0.0033
3 20 93 -0.0166 0.0132 0.0030 0.0v42 20 4 -9.0349 0.v069 @.0060
: 20 5 =0.0053  0.0008 0.0049 0,0041 20 6 .0052 0.003¢ 0.0058
&N 7 =0.0274 -0.01U7 0.6063 0.0064 co6 A -0.0039 ©.6032 6.0023
1 2 9 0.0093 =-0.0134 0.0063 8.0066 20 10 0.0233 0.0052 0.003y
; 20 1) 0.0:42 0.0007 0.0036 0.0057 20 12 0.067¢ 0.803% 0.0033%
3 20 13 ©.0083 =0.0060 ©.0093 0.0071 20 14 -0.0057 0.6032 0.0030
20 13 0.0149 -0.0177 0.00843 ®.0036 20 1 =0.8174% ©.0042 0.0043
20 17 0.6010 0.00%10 8.0036 0.0041 20 10 =0.0223 0.0030 0.0043
29 19 ~0.0038 0.0003 ¢.0026 0.6049 20 20 0.0262 @.6032 e.0042 ©.0036
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